7.4 PERMEATION GROUTING

7.4.1 Definitions

7.4.1.1 Geotechnical Data Report (GDR)
A document that presents an interpretation of the known subsurface data for the project. The purpose of the GDR is to compile all geological, geotechnical, groundwater, and other data obtained from the geotechnical investigations for use by the various participants in the project. If available, this information will be included within the contract documents as specifically applicable to the project.

7.4.1.2 Geotechnical Baseline Report (GBR)
The intent of a GBR is to clearly and contractually define the geotechnical conditions through which tunneling will occur in order to evaluate a differing site condition (if encountered) and it is used as a basis of bid for the contractor. By assessing the anticipated geotechnical conditions for a project and providing baselines in the contract, the contractor has a basis from which to prepare their bid and select their means and methods. The baseline conditions do not necessarily reflect the actual conditions; they are not geotechnical fact to be encountered. Rather, they represent the owner’s assumption of existing geotechnical conditions for the project. If available, this information will be included within the contract documents as specifically applicable to the project. Regardless of inclusion, this information shall be investigated, interpreted, verified and/or developed by the contractor prior to commencement of the work.

7.4.1.3 Permeation Grouting
The direct pressure injection of a chemical fluid grout into the ground to fill the spaces between soil particles, without causing excessive movement or fracturing of the soil formation. Permeation grouting is performed prior to commencement of tunneling operations to provide a more consistent and stable soil matrix.

7.4.1.4 Chemical Grout
A chemical fluid grout that sets and alters the physical properties of a geologic mass, typically composed of (1) matrix forming base materials, (2) reactants and, (3) accelerators or retarders.
7.4.2 Section Includes
This item includes pre-excavation ground stabilization as required within the Contract Documents by permeation grouting. Permeation grouting shall be performed in accordance with these specifications. If applicable, the general extents of permeation grouting for a specific project may be shown in the plans.

7.4.3 Requirements
The purpose of the grouting program is to stabilize non-cementitious granular soil and fill as shown on Construction Drawings. The permeation grouting program is to be completed prior to beginning tunnel construction.

The effectiveness of the grouting program shall be verified in accordance with requirements specified herein.

Restricted work hours and permits are as specified in the Contract Documents. The Contractor shall coordinate all work with affected utility companies, and stakeholders and comply with the requirements outlined within any access and/or construction permit obtained by the City.

7.4.4 Quality Control
Before the Contractor begins tunnel construction, demonstrate to the City’s Construction Project Manager, using either drilling and sampling methods, geophysical methods, data records during grouting operations, or other acceptable means as stated in the approved quality control program, that the grouting zones have been thoroughly impregnated and stabilized with chemical grout. If grouting zones are found to be inadequately treated, the Contractor shall perform additional chemical grouting as needed and at no additional expense to the City.

The Contractor shall obtain samples of grout used for chemical grouting for gel time checks: at least one for every half-hour of pumping or for every 250 gallons of grout, whichever is more frequent. The gel samples shall be labeled and stored in accordance with manufacturer recommendations until completion of the project.

7.4.5 Submittals

7.4.5.1 Preconstruction
Submit the following shop drawings and plans a minimum of 8 weeks prior to mobilization of grouting equipment for review by the City’s Construction Project Manager, utility owners and stakeholders:


2. Proposed grout mix, gel time, and certified laboratory testing results documenting the required strength of soil samples injected with the proposed chemical grout mix, at least 45 days prior to beginning grouting operations.

3. Detailed chemical grouting work plans and shop drawings, describing the grouting approach, the chemical grout to be used, grout hole locations and orientations, grout pipe installation procedures, locations and arrangement of injection points, grouting
equipment, injection procedures and sequences, proposed injection pressures, recording equipment, data reporting methods, work sequences, schedules, method of monitoring and protecting existing utilities; testing methods to be used to verify the effectiveness of grouting with respect to strength and acceptance criteria; quality assurance program and methods for determining that grouted zones are effectively stabilized; and any other information necessary to demonstrate compliance with the specified purpose of this grouting work. Also show grout target volumes at each proposed grout injection point including assumptions with respect to porosity and target volumes. Indicate cure time required for chemically grouted soil to obtain required strength prior to tunneling.

7.4.5.2 During Construction
Submit records of grouting operations to the City’s Construction Project Manager on a daily basis. Include grout mix, gel time, injection date and time, injection pressure and rate, injection volumes and exact injection locations. Provide data in an acceptable chart-type format that facilitates rapid visual evaluation of the results of the work, and update daily.

Submit results of surface monitoring point and settlement monitoring point array monitoring on a daily basis.

Submit test results by the end of the day in which they were taken, and with frequency as specified herein.

Within one week of completion of the grouting program, submit an as-built sketch showing locations, depths and orientations of drilled holes and any grout pipes left in place.

7.4.6 Materials

7.4.6.1 Chemical Grout
Chemical grout shall consist of a liquid sodium silicate base, reactant, water, accelerator, and other admixtures as required. The Contractor shall design the chemical grout mix so that when injected into standard medium dense sand (Ottawa 20-30) specimens, the unconfined compressive strength of the grouted test sample is no more than 200 psi and no less than 100 psi. The Contractor shall design the trial mix and conduct laboratory tests to verify trial mix meets strength requirements in accordance with ASTM D4219 and D4320.

7.4.6.2 Base Material
The base material for the grout shall be liquid sodium silicate with a specific gravity of 1.4 to 1.5 and a silicate-to-soda ratio of 3.20 to 3.35. The minimum sodium silicate concentration shall be 50 percent of the mix by volume. Sodium silicate shall be delivered in sealed containers, or a certified tank truck, accompanied by the supplier’s certificate of origin.

7.4.6.3 Reactant
The reactant shall be an organic base type which, when properly mixed with other grout components, provides a permanent, irreversible gel with controllable gel times. The resulting gels shall exhibit less than 15 percent syneresis in 30 days when mixed with appropriate amounts of sodium silicate, water and accelerator, and shall not exhibit objectionable odors such as ammonia. Sodium bicarbonate, sodium aluminate and other reactants that produce a
temporary grout are not allowed. Reactant shall be delivered in sealed containers, accompanied by the supplier’s certificate of origin.

7.4.6.4 Water
Water shall be potable and free of impurities that will deleteriously affect the grout gelling characteristics and strength development of the grouted soil.

7.4.6.5 Accelerator
An accelerator may be utilized if required. It shall be technical grade, water soluble calcium chloride or other approved salt, containing a minimum amount of insolubles.

7.4.6.6 Drilling Equipment
Drilling equipment shall be of the type and capacity suitable for drilling the required hole diameters to the tolerances identified or established by the Contractor through evaluating the potential ground conditions from the Geotechnical Data Report and/or Geotechnical Baseline Report, as applicable. Drilling equipment shall also be able to drill at the approved inclinations and depths for installing grout pipes.

7.4.6.7 Grouting Equipment
Chemical grouting equipment shall have the capacity and mechanical capability to do the work as described herein. The equipment shall be maintained in good operating condition at all times. If grout holes are lost or damaged due to mechanical failure of the equipment, inadequacy of grout supply, or improper injection procedure, the Contractor shall backfill these holes and replace them at no additional cost to the City.

The chemical grout plant shall be a continuous mixing type capable of supplying, proportioning, mixing and pumping the grout with a gel time as specified. Batch-type systems are not permitted. The main pumps shall be equipped with recording, positive displacement meters that will accurately measure the volumes of the various components pumped. Meters shall also be provided at the injection point and at each material line ahead of mixing. The meters shall act independently of the viscosity of the metered fluid. The accuracy of the meters shall be checked at least twice daily.

The pumping unit shall be equipped with piping and/or hoses of adequate capacity to carry the base grout and reactant solutions separately to the point of mixing. The hoses shall be joined using a ‘Y’ fitting containing check valves to prevent backflow, followed by a baffling chamber. A sampling valve shall be placed beyond the point of mixing and the baffling chamber. The pumping unit shall allow distribution of proportioned grout, under pressure, to the grouting locations monitored by separate, automatic real-time display, flow rate indicators and gauges.

Chemicals shall be stored in metal tanks, suitably protected from accidental discharge. The Contractor shall maintain storage tank capacity sufficient to supply at least one day’s worth of grouting materials so as to not interrupt the work if chemical delivery delays occur.

The Contractor shall provide the required chemical quality control testing apparatus on site including, but not limited to: hydrometers, balance scales, graduates, viscometers and other devices required to conduct chemical material acceptance tests, chemical proportioning tests, and grout quality tests for proper quality control of the work.
7.4.7 Grout Pipes
Grout pipes shall be installed horizontally, inclined, or vertically to obtain the specified minimum grout coverage. Grout pipes shall be re-groutable sleeve-port type grout pipes, with grout ports at maximum 15-inch centers covered by expandable rubber sleeves. After being placed in a borehole, the sleeve-port grout pipes shall be encased in a continuous brittle mortar sheath. An internal double packer shall be used to inject grout at a specific sleeve-port.

7.4.8 Preparation
Permeation grouting operations shall not begin until geotechnical instrumentation has been installed as required in Section 7.1 of these Standard Construction Specifications.
Coordinate with all affected utility companies as applicable. Coordinate the sequence of operations taking into consideration: a) means of access to the area; b) permitted areas of operations; c) time restrictions for the performance of the Work; and d) maintenance and adherence to utility traffic requirements.

7.4.9 Installation of Grout Pipes
The Contractor shall locate, protect, support and maintain, without interruption, all utility facilities, equipment and services. Before beginning grout pipe installation from the surface, the proposed grout hole locations shall be marked by the Contractor and cleared by the “on-call” utility notification system. If existing utilities are within 5 feet of proposed grout pipes, the Contractor shall pothole the utilities before installing grout pipes.
Close coordination with the affected utility companies and/or property owners will be necessary when installing grout pipes, in terms of both grout pipe location and the timing of installation.

The minimum extents of the soil zones to be grouted are shown on the Construction Drawings. The intent of the grouting program is to treat granular soil and fill. During drilling, the Contractor should be able to distinguish these granular soils from cohesive soil and fill by drilling action and return of cuttings. Grout pipes shall be installed to the elevations shown on the Construction Drawings or until drilling action indicates that the grout pipes have fully penetrated through the depth of granular soil and fill, whichever is greater.

7.4.10 Grouting Procedures
Using double packers or other approved suitable measures, inject chemical grout into the selected zones through ports in the sleeve pipes. The Contractor shall use soils information gained while drilling grout pipes to manage the grout plan accordingly. The grouting pressure for any one pipe shall not be more than 2 psi per foot of overburden. Adjust injection procedures as required to prevent surface heave. Temporary high injection pressures are permitted to crack open sleeve-ports, but these pressures are not allowed for longer than one minute.

The Contractor shall conduct a surface pressure test of sleeve port grout tube from manifold to injection point (equivalent to maximum depth) to ascertain system pressure loss. This measured pressure is used for estimating appropriate grouting pressures for production grouting. Inject grout at rates not greater than 10 gpm.
The Contractor shall survey surface monitoring points and arrays each day after grouting operations are completed. Ground heaving and settlement shall not exceed monitoring criteria as specified in Section 7.1 of these Standard Construction Specifications.

7.4.11 Leakage Monitoring
The Contractor shall closely monitor the rate of grout take during grout injection, and ascertain the cause of sudden drops in grout injection pressures following initial start-up pressure adjustments. Regularly monitor the ground surface adjacent to the grouting site for leakage. In the event that serious grout leaks are observed, the Contractor shall temporarily terminate injection and plug leaks before resuming pumping. The City’s Construction Project Manager shall be informed immediately of such leakage.

If excessive grout take is experienced that is not attributable to leakage, the Contractor shall adjust injection pressure, pumping rates, gel or setting times, or grout composition, subject to the acceptance of the City’s Construction Project Manager, to reduce grout use to acceptable levels.

7.4.12 Clean Up and Site Restoration
Remove all equipment, unused materials, and debris from the site at the end of the job. Spilled materials and ground shall be cleaned-up. After tunneling is completed, grout pipes shall be filled with lean cement and cut off within one foot of the ground surface.

Restoration shall follow construction as the work progresses and shall be completed as soon as possible. Restore and repair any damage resulting from heave or spills caused by the work. Any property or improvements damaged or destroyed, shall be restored to a condition equal to or better than existing prior to construction at no additional cost to the City. Restoration shall be completed immediately if a third party or the City is inconvenienced by the damage, and in no case later than thirty (30) days after the damage is discovered. This provision for restoration shall include all property which was affected by the construction operations.

END OF SPECIFICATION