Overview:

An Impact Effort Matrix is a tool that helps one decide which solution a team should pursue from a list of possible solutions. By using an Impact Effort Matrix, one is able to visually prioritize solutions based on ease of implementation. The matrix can help determine which solutions are the easiest to implement with limited time and resources.

When the ideas are placed into the matrix based on the level of effort, from low to high, and the impact of implementation, from low to high, it is easy to visualize the groupings. This allows the team to focus on an idea that will give them the biggest impact with the least amount of effort. The illustration to the left categorizes the ideas in four categories: Low-hanging Fruit, Quick Wins, Major Projects, and Not Worth Doing. A team would typically pursue the ideas in the blue quadrant or the Quick Wins.

How to build an Impact Effort Matrix:

After the Gap Analysis (A3 Box 4) phase of the problem-solving process, a team should have determined some of the causes that are not allowing them to get to the ideal state (A3 Box 3). Once the team finalizes which cause(s) they are going to pursue on this pass, they start Brainstorming (A3 Box 5). An Impact Effort Matrix is one tool the team can use during Brainstorming and it can begin by members of the team thinking, “If we...” do this, “then we...” solve this. Team members can organize their ideas in two columns on a chart, as seen on the right. After the team has had sufficient time to Brainstorm, another flip chart should be labeled with the cause for this stage of brainstorming and a simple matrix can be drawn as illustrated to the left. The team should evaluate the impact of their ideas (low to high) versus effort (low to high) and place their ideas within the appropriate area of the matrix. Ideas in the blue area are considered first.
Different axes:

- Apply different scales to the axes
 - Low, Medium, Large
 - Scales from 1 to 10
 - $ financial return (impact)
 - Hours required (effort)

- Apply different criteria to the axes
 - Volumes
 - Complexity

- Move the borders