Globeville Landing Outfall (GLO)
Geomembrane Cover / Liner

R. K. FROBEL & ASSOCIATES
EVERGREEN, COLORADO USA
Introductions

• Ron Frobel, P.E.
 – R.K. Frobel & Associates
 – Designer of GLO geomembrane and QA/QC for Denver
 – Over 30 years geosynthetics engineering experience
 – Past chair of American Society of Testing and Materials D35 Subcommittee on Geomembranes
 – Past team leader of USA Delegation, International Standards Organization Geosynthetics Team (1985-2001)
 – Editorial Board – Geosynthetics Magazine
 – Over 85 technical publications on geosynthetics
Contents

• Geomembrane background
 – What are geomembranes
 – Uses
 – Why geomembrane at GLO
• GLO design considerations
 – GLO site conditions
 – Selected design components
• GLO quality control and quality assurance
Geomembrane

“An essentially impermeable geosynthetic composed of one or more synthetic sheets”

Major Types of Geomembranes

• Thermoplastic Polymers
 – Polyvinyl Chloride (ex: PVC), Polyethylene (ex: HDPE, LLDPE)

• Thermoset Polymers (Elastomers)

• Thermoplastic Elastomers

• Others:
 – Prefabricated Bituminous
 – Spray Applied Polymer
 – Spray Applied Bitumin
 – Geosynthetic Clay Liners
Advantages of Geomembranes

- Uniformity (manufacturer quality control)
- Ease of installation
- Established methods and standards
 - design methods
 - quality specifications
 - test methods
- Extremely low permeability
- Proven historical performance
- 100 years life expectancy when buried
Primary Applications

- Municipal Waste Liners and Covers: 40.8%
- Mining / Industrial Containment: 14.2%
- Hazardous Waste Containment: 10.5%
- Water Reservoirs / Covers: 9.5%
- Recreation: 8.5%
- Water Conveyance (Canals): 3.5%
- Earth/Rock/Concrete Dams: 1.5%
- Agricultural: 3.0%
- Specialty Applications: 8.5%
Design Considerations

- Type of Containment
- Geotechnical Considerations
- Geotechnical / Slope / Soil Interaction
- Geomembrane Selection:
 - Properties, Durability, Constructability
- Connection / Anchor / Seaming Details
- Manufacturer/Construction Quality Assurance Program
- Electrical Leak Location Survey Final Acceptance
Type of Containment - GLO

- **Cover over buried waste**
 - Prevent contaminated groundwater from moving into storm water channel

- **Liner under storm water channel**
 - Prevent storm water from moving downward into buried waste
Geotechnical Considerations – GLO

- Buried waste does not provide solid foundation
- Structural support required for liner
- Design: Install stone columns to bedrock (soil stabilization)
- Design: Install stone/geogrid strengthening layer (settlement)
Geotechnical Considerations – GLO

- Buried waste does not provide solid foundation
- Structural support required for liner
- Design: Install stone columns to bedrock (soil stabilization)
- Design: Install stone/geogrid strengthening layer (settlement)
Geotechnical / Slope Interaction Considerations - GLO

• Side slopes
 – Prevent cover soils from sliding
 – Prevent liner from sliding/ moving

• Design:
 – 3:1 sideslopes,
 – liner material textured to prevent slippage
Geomembrane Selection - GLO

- Geomembrane Properties
 - Select for mechanical properties
 - Don’t have chemical compatibility concerns

- Durability
 - Select for long-term durability
 - Liner will be buried so don’t have UV degradation concerns

- Constructability
 - Large panel (rolls) deployment
 - Thermal fusion welded seams
Connection / Anchor / Seaming Details

• Seams
 – Thermal fusion
 – Extrusion weld (patch)

• Anchors
 – Trench
 – Wall
Seam Detail

Cross Section of Seam

- Liner
- Fused Material
- Squeeze-Out
- Weld Tracks
- Edge of Track
- Air Channel
- Liner
Quality Assurance - GLO

- Manufacturer quality assurance
- Construction quality control – installer (QC)
- Construction quality assurance – engineer (CQA)
- Electrical leak location survey
This design shows how an impermeable barrier, or liner, will prevent storm water from merging with ground water.
Thank you

Questions?

R. K. Frobel & Associates